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To find the potential inside the sphere (r < R), we must break the integral into
two pieces, using in each region the field that prevails there:

V (r) = −1

4πε0

∫ R

∞
q

r ′2 dr ′ −
∫ r

R
(0) dr ′ = 1

4πε0

q

r ′

∣∣∣∣
R

∞
+ 0 = 1

4πε0

q

R
.

Notice that the potential is not zero inside the shell, even though the field is.
V is a constant in this region, to be sure, so that ∇V = 0—that’s what matters.
In problems of this type, you must always work your way in from the reference
point; that’s where the potential is “nailed down.” It is tempting to suppose that
you could figure out the potential inside the sphere on the basis of the field there
alone, but this is false: The potential inside the sphere is sensitive to what’s going
on outside the sphere as well. If I placed a second uniformly charged shell out at
radius R′ > R, the potential inside R would change, even though the field would
still be zero. Gauss’s law guarantees that charge exterior to a given point (that
is, at larger r ) produces no net field at that point, provided it is spherically or
cylindrically symmetric, but there is no such rule for potential, when infinity is
used as the reference point.

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere
whose radius is R and whose total charge is q . Use infinity as your reference point.
Compute the gradient of V in each region, and check that it yields the correct field.
Sketch V (r).

Problem 2.22 Find the potential a distance s from an infinitely long straight wire
that carries a uniform line charge λ. Compute the gradient of your potential, and
check that it yields the correct field.

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the
center, using infinity as your reference point.

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference
between a point on the axis and a point on the outer cylinder. Note that it is not
necessary to commit yourself to a particular reference point, if you use Eq. 2.22.

2.3.3 Poisson’s Equation and Laplace’s Equation

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a
scalar potential.

E = −∇V .

The question arises: What do the divergence and curl of E,

∇ · E = ρ

ε0
and ∇ × E = 0,
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look like, in terms of V ? Well, ∇ · E = ∇ · (−∇V ) = −∇2V , so, apart from that
persistent minus sign, the divergence of E is the Laplacian of V . Gauss’s law,
then, says

∇2V = − ρ

ε0
. (2.24)

This is known as Poisson’s equation. In regions where there is no charge, so
ρ = 0, Poisson’s equation reduces to Laplace’s equation,

∇2V = 0. (2.25)

We’ll explore this equation more fully in Chapter 3.
So much for Gauss’s law. What about the curl law? This says that

∇ × E = ∇ × (−∇V ) = 0.

But that’s no condition on V —curl of gradient is always zero. Of course, we
used the curl law to show that E could be expressed as the gradient of a scalar,
so it’s not really surprising that this works out: ∇ × E = 0 permits E = −∇V ;
in return, E = −∇V guarantees ∇ × E = 0. It takes only one differential equa-
tion (Poisson’s) to determine V , because V is a scalar; for E we needed two, the
divergence and the curl.

2.3.4 The Potential of a Localized Charge Distribution

I defined V in terms of E (Eq. 2.21). Ordinarily, though, it’s E that we’re looking
for (if we already knew E, there wouldn’t be much point in calculating V ). The
idea is that it might be easier to get V first, and then calculate E by taking the
gradient. Typically, then, we know where the charge is (that is, we know ρ), and
we want to find V . Now, Poisson’s equation relates V and ρ, but unfortunately
it’s “the wrong way around”: it would give us ρ, if we knew V , whereas we want
V , knowing ρ. What we must do, then, is “invert” Poisson’s equation. That’s the
program for this section, although I shall do it by roundabout means, beginning,
as always, with a point charge at the origin.

The electric field is E = (1/4πε0)(1/r2) r̂, and dl = dr r̂ + r dθ θ̂+
r sin θ dφ φ̂ (Eq. 1.68), so

E · dl = 1

4πε0

q

r2
dr.

Setting the reference point at infinity, the potential of a point charge q at the
origin is

V (r) = −
∫ r

O
E · dl = −1

4πε0

∫ r

∞
q

r ′2 dr ′ = 1
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q
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r
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r
.

(You see here the advantage of using infinity for the reference point: it kills the
lower limit on the integral.) Notice the sign of V ; presumably the conventional
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3 Potentials

3.1 LAPLACE’S EQUATION

3.1.1 Introduction

The primary task of electrostatics is to find the electric field of a given stationary
charge distribution. In principle, this purpose is accomplished by Coulomb’s law,
in the form of Eq. 2.8:

E(r) = 1

4πε0

∫ r̂
r2 ρ(r′) dτ ′. (3.1)

Unfortunately, integrals of this type can be difficult to calculate for any but the
simplest charge configurations. Occasionally we can get around this by exploiting
symmetry and using Gauss’s law, but ordinarily the best strategy is first to calcu-
late the potential, V , which is given by the somewhat more tractable Eq. 2.29:

V (r) = 1

4πε0

∫
1

r ρ(r′) dτ ′. (3.2)

Still, even this integral is often too tough to handle analytically. Moreover, in prob-
lems involving conductors ρ itself may not be known in advance; since charge is
free to move around, the only thing we control directly is the total charge (or
perhaps the potential) of each conductor.

In such cases, it is fruitful to recast the problem in differential form, using
Poisson’s equation (2.24),

∇2V = − 1

ε0
ρ, (3.3)

which, together with appropriate boundary conditions, is equivalent to Eq. 3.2.
Very often, in fact, we are interested in finding the potential in a region where
ρ = 0. (If ρ = 0 everywhere, of course, then V = 0, and there is nothing further
to say—that’s not what I mean. There may be plenty of charge elsewhere, but
we’re confining our attention to places where there is no charge.) In this case,
Poisson’s equation reduces to Laplace’s equation:

∇2V = 0, (3.4)

113
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or, written out in Cartesian coordinates,

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0. (3.5)

This formula is so fundamental to the subject that one might almost say elec-
trostatics is the study of Laplace’s equation. At the same time, it is a ubiquitous
equation, appearing in such diverse branches of physics as gravitation and mag-
netism, the theory of heat, and the study of soap bubbles. In mathematics, it plays
a major role in analytic function theory. To get a feel for Laplace’s equation and
its solutions (which are called harmonic functions), we shall begin with the one-
and two-dimensional versions, which are easier to picture, and illustrate all the
essential properties of the three-dimensional case.

3.1.2 Laplace’s Equation in One Dimension

Suppose V depends on only one variable, x . Then Laplace’s equation becomes

d2V

dx2
= 0.

The general solution is

V (x) = mx + b, (3.6)

the equation for a straight line. It contains two undetermined constants (m
and b), as is appropriate for a second-order (ordinary) differential equation. They
are fixed, in any particular case, by the boundary conditions of that problem. For
instance, it might be specified that V = 4 at x = 1, and V = 0 at x = 5. In that
case, m = −1 and b = 5, so V = −x + 5 (see Fig. 3.1).

I want to call your attention to two features of this result; they may seem silly
and obvious in one dimension, where I can write down the general solution explic-
itly, but the analogs in two and three dimensions are powerful and by no means
obvious:

x

V

1

2

3

4

1 3 52 4 6

FIGURE 3.1
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1. V (x) is the average of V (x + a) and V (x − a), for any a:

V (x) = 1

2
[V (x + a) + V (x − a)].

Laplace’s equation is a kind of averaging instruction; it tells you to assign
to the point x the average of the values to the left and to the right of x .
Solutions to Laplace’s equation are, in this sense, as boring as they could
possibly be, and yet fit the end points properly.

2. Laplace’s equation tolerates no local maxima or minima; extreme values
of V must occur at the end points. Actually, this is a consequence of (1),
for if there were a local maximum, V would be greater at that point than
on either side, and therefore could not be the average. (Ordinarily, you
expect the second derivative to be negative at a maximum and positive at a
minimum. Since Laplace’s equation requires, on the contrary, that the sec-
ond derivative is zero, it seems reasonable that solutions should exhibit no
extrema. However, this is not a proof, since there exist functions that have
maxima and minima at points where the second derivative vanishes: x4, for
example, has such a minimum at the point x = 0.)

3.1.3 Laplace’s Equation in Two Dimensions

If V depends on two variables, Laplace’s equation becomes

∂2V

∂x2
+ ∂2V

∂y2
= 0.

This is no longer an ordinary differential equation (that is, one involving ordinary
derivatives only); it is a partial differential equation. As a consequence, some of
the simple rules you may be familiar with do not apply. For instance, the gen-
eral solution to this equation doesn’t contain just two arbitrary constants—or, for
that matter, any finite number—despite the fact that it’s a second-order equation.
Indeed, one cannot write down a “general solution” (at least, not in a closed form
like Eq. 3.6). Nevertheless, it is possible to deduce certain properties common to
all solutions.

It may help to have a physical example in mind. Picture a thin rubber sheet (or a
soap film) stretched over some support. For definiteness, suppose you take a card-
board box, cut a wavy line all the way around, and remove the top part (Fig. 3.2).
Now glue a tightly stretched rubber membrane over the box, so that it fits like a
drum head (it won’t be a flat drumhead, of course, unless you chose to cut the
edges off straight). Now, if you lay out coordinates (x, y) on the bottom of the
box, the height V (x, y) of the sheet above the point (x, y) will satisfy Laplace’s
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V

FIGURE 3.2

equation.1 (The one-dimensional analog would be a rubber band stretched
between two points. Of course, it would form a straight line.)

Harmonic functions in two dimensions have the same properties we noted in
one dimension:

1. The value of V at a point (x, y) is the average of those around the point.
More precisely, if you draw a circle of any radius R about the point (x, y),
the average value of V on the circle is equal to the value at the center:

V (x, y) = 1

2π R

∮
circle

V dl.

(This, incidentally, suggests the method of relaxation, on which computer
solutions to Laplace’s equation are based: Starting with specified values for
V at the boundary, and reasonable guesses for V on a grid of interior points,
the first pass reassigns to each point the average of its nearest neighbors.
The second pass repeats the process, using the corrected values, and so on.
After a few iterations, the numbers begin to settle down, so that subsequent
passes produce negligible changes, and a numerical solution to Laplace’s
equation, with the given boundary values, has been achieved.)2

2. V has no local maxima or minima; all extrema occur at the boundaries. (As
before, this follows from (1).) Again, Laplace’s equation picks the most
featureless function possible, consistent with the boundary conditions: no
hills, no valleys, just the smoothest conceivable surface. For instance, if
you put a ping-pong ball on the stretched rubber sheet of Fig. 3.2, it will

1Actually, the equation satisfied by a rubber sheet is

∂

∂x

(
g

∂V

∂x

)
+ ∂

∂y

(
g

∂V

∂y

)
= 0, where g =

[
1 +

(
∂V

∂x

)2

+
(

∂V

∂y

)2
]−1/2

;

it reduces (approximately) to Laplace’s equation as long as the surface does not deviate too radically
from a plane.
2See, for example, E. M. Purcell, Electricity and Magnetism, 2nd ed. (New York: McGraw-Hill, 1985),
problem 3.30.
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roll over to one side and fall off—it will not find a “pocket” somewhere to
settle into, for Laplace’s equation allows no such dents in the surface. From
a geometrical point of view, just as a straight line is the shortest distance
between two points, so a harmonic function in two dimensions minimizes
the surface area spanning the given boundary line.

3.1.4 Laplace’s Equation in Three Dimensions

In three dimensions I can neither provide you with an explicit solution (as in one
dimension) nor offer a suggestive physical example to guide your intuition (as I
did in two dimensions). Nevertheless, the same two properties remain true, and
this time I will sketch a proof.3

1. The value of V at point r is the average value of V over a spherical surface
of radius R centered at r:

V (r) = 1

4π R2

∮
sphere

V da.

2. As a consequence, V can have no local maxima or minima; the extreme
values of V must occur at the boundaries. (For if V had a local maximum
at r, then by the very nature of maximum I could draw a sphere around r
over which all values of V —and a fortiori the average—would be less than
at r.)

Proof. Let’s begin by calculating the average potential over a spherical surface
of radius R due to a single point charge q located outside the sphere. We may as
well center the sphere at the origin and choose coordinates so that q lies on the
z-axis (Fig. 3.3). The potential at a point on the surface is

V = 1

4πε0

q

r ,

q

z

daθ
R

r

x

y

FIGURE 3.3

3For a proof that does not rely on Coulomb’s law (only on Laplace’s equation), see Prob. 3.37.
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where

r2 = z2 + R2 − 2z R cos θ,

so

Vave = 1

4π R2

q

4πε0

∫
[z2 + R2 − 2z R cos θ ]−1/2 R2 sin θ dθ dφ

= q

4πε0

1

2z R

√
z2 + R2 − 2z R cos θ

∣∣∣∣
π

0

= q

4πε0

1

2z R
[(z + R) − (z − R)] = 1

4πε0

q

z
.

But this is precisely the potential due to q at the center of the sphere! By the
superposition principle, the same goes for any collection of charges outside the
sphere: their average potential over the sphere is equal to the net potential they
produce at the center. �

Problem 3.1 Find the average potential over a spherical surface of radius R due to
a point charge q located inside (same as above, in other words, only with z < R).
(In this case, of course, Laplace’s equation does not hold within the sphere.) Show
that, in general,

Vave = Vcenter + Qenc

4πε0 R
,

where Vcenter is the potential at the center due to all the external charges, and Qenc is
the total enclosed charge.

Problem 3.2 In one sentence, justify Earnshaw’s Theorem: A charged particle
cannot be held in a stable equilibrium by electrostatic forces alone. As an example,
consider the cubical arrangement of fixed charges in Fig. 3.4. It looks, off hand,
as though a positive charge at the center would be suspended in midair, since it
is repelled away from each corner. Where is the leak in this “electrostatic bottle”?
[To harness nuclear fusion as a practical energy source it is necessary to heat a
plasma (soup of charged particles) to fantastic temperatures—so hot that contact
would vaporize any ordinary pot. Earnshaw’s theorem says that electrostatic con-
tainment is also out of the question. Fortunately, it is possible to confine a hot plasma
magnetically.]

q

q q

q

q
qq

q

FIGURE 3.4
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Problem 3.3 Find the general solution to Laplace’s equation in spherical coordi-
nates, for the case where V depends only on r . Do the same for cylindrical coordi-
nates, assuming V depends only on s.

Problem 3.4

(a) Show that the average electric field over a spherical surface, due to charges
outside the sphere, is the same as the field at the center.

(b) What is the average due to charges inside the sphere?

3.1.5 Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V ; in addition, suitable boundary
conditions must be supplied. This raises a delicate question: What are appropriate
boundary conditions, sufficient to determine the answer and yet not so strong
as to generate inconsistencies? The one-dimensional case is easy, for here the
general solution V = mx + b contains two arbitrary constants, and we therefore
require two boundary conditions. We might, for instance, specify the value of the
function at each end, or we might give the value of the function and its derivative
at one end, or the value at one end and the derivative at the other, and so on.
But we cannot get away with just the value or just the derivative at one end—
this is insufficient information. Nor would it do to specify the derivatives at both
ends—this would either be redundant (if the two are equal) or inconsistent (if they
are not).

In two or three dimensions we are confronted by a partial differential equation,
and it is not so obvious what would constitute acceptable boundary conditions. Is
the shape of a taut rubber membrane, for instance, uniquely determined by the
frame over which it is stretched, or, like a canning jar lid, can it snap from one
stable configuration to another? The answer, as I think your intuition would sug-
gest, is that V is uniquely determined by its value at the boundary (canning jars
evidently do not obey Laplace’s equation). However, other boundary conditions
can also be used (see Prob. 3.5). The proof that a proposed set of boundary condi-
tions will suffice is usually presented in the form of a uniqueness theorem. There
are many such theorems for electrostatics, all sharing the same basic format—I’ll
show you the two most useful ones.4

First uniqueness theorem: The solution to Laplace’s equation in
some volume V is uniquely determined if V is specified on the
boundary surface S.

Proof. In Fig. 3.5 I have drawn such a region and its boundary. (There could also
be “islands” inside, so long as V is given on all their surfaces; also, the outer

4I do not intend to prove the existence of solutions here—that’s a much more difficult job. In context,
the existence is generally clear on physical grounds.
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FIGURE 3.5

boundary could be at infinity, where V is ordinarily taken to be zero.) Suppose
there were two solutions to Laplace’s equation:

∇2V1 = 0 and ∇2V2 = 0,

both of which assume the specified value on the surface. I want to prove that they
must be equal. The trick is look at their difference:

V3 ≡ V1 − V2.

This obeys Laplace’s equation,

∇2V3 = ∇2V1 − ∇2V2 = 0,

and it takes the value zero on all boundaries (since V1 and V2 are equal there).
But Laplace’s equation allows no local maxima or minima—all extrema occur on
the boundaries. So the maximum and minimum of V3 are both zero. Therefore V3

must be zero everywhere, and hence

V1 = V2. �

Example 3.1. Show that the potential is constant inside an enclosure com-
pletely surrounded by conducting material, provided there is no charge within the
enclosure.

Solution
The potential on the cavity wall is some constant, V0 (that’s item (iv), in
Sect. 2.5.1), so the potential inside is a function that satisfies Laplace’s equa-
tion and has the constant value V0 at the boundary. It doesn’t take a genius to
think of one solution to this problem: V = V0 everywhere. The uniqueness the-
orem guarantees that this is the only solution. (It follows that the field inside an
empty cavity is zero—the same result we found in Sect. 2.5.2 on rather different
grounds.)

The uniqueness theorem is a license to your imagination. It doesn’t matter
how you come by your solution; if (a) it satisfies Laplace’s equation and (b) it has
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the correct value on the boundaries, then it’s right. You’ll see the power of this
argument when we come to the method of images.

Incidentally, it is easy to improve on the first uniqueness theorem: I assumed
there was no charge inside the region in question, so the potential obeyed
Laplace’s equation, but we may as well throw in some charge (in which case
V obeys Poisson’s equation). The argument is the same, only this time

∇2V1 = − 1

ε0
ρ, ∇2V2 = − 1

ε0
ρ,

so

∇2V3 = ∇2V1 − ∇2V2 = − 1

ε0
ρ + 1

ε0
ρ = 0.

Once again the difference (V3 ≡ V1 − V2) satisfies Laplace’s equation and has the
value zero on all boundaries, so V3 = 0 and hence V1 = V2.

Corollary: The potential in a volume V is uniquely determined if
(a) the charge density throughout the region, and (b) the
value of V on all boundaries, are specified.

3.1.6 Conductors and the Second Uniqueness Theorem

The simplest way to set the boundary conditions for an electrostatic problem is to
specify the value of V on all surfaces surrounding the region of interest. And this
situation often occurs in practice: In the laboratory, we have conductors connected
to batteries, which maintain a given potential, or to ground, which is the exper-
imentalist’s word for V = 0. However, there are other circumstances in which
we do not know the potential at the boundary, but rather the charges on various
conducting surfaces. Suppose I put charge Qa on the first conductor, Qb on the
second, and so on—I’m not telling you how the charge distributes itself over each
conducting surface, because as soon as I put it on, it moves around in a way I do
not control. And for good measure, let’s say there is some specified charge density
ρ in the region between the conductors. Is the electric field now uniquely deter-
mined? Or are there perhaps a number of different ways the charges could arrange
themselves on their respective conductors, each leading to a different field?

Second uniqueness theorem: In a volume V surrounded by conduc-
tors and containing a specified charge density ρ, the electric field is
uniquely determined if the total charge on each conductor is given
(Fig. 3.6). (The region as a whole can be bounded by another con-
ductor, or else unbounded.)

Proof. Suppose there are two fields satisfying the conditions of the problem. Both
obey Gauss’s law in differential form in the space between the conductors:

∇ · E1 = 1

ε0
ρ, ∇ · E2 = 1

ε0
ρ.
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1.3.5 The Fundamental Theorem for Curls

The fundamental theorem for curls, which goes by the special name of Stokes’
theorem, states that

∫
S

(∇ × v) · da =
∮
P

v · dl. (1.57)

As always, the integral of a derivative (here, the curl) over a region (here, a patch
of surface, S) is equal to the value of the function at the boundary (here, the
perimeter of the patch, P). As in the case of the divergence theorem, the boundary
term is itself an integral—specifically, a closed line integral.

Geometrical Interpretation: Recall that the curl measures the “twist” of the
vectors v; a region of high curl is a whirlpool—if you put a tiny paddle wheel
there, it will rotate. Now, the integral of the curl over some surface (or, more
precisely, the flux of the curl through that surface) represents the “total amount
of swirl,” and we can determine that just as well by going around the edge and
finding how much the flow is following the boundary (Fig. 1.31). Indeed,

∮
v · dl

is sometimes called the circulation of v.
You may have noticed an apparent ambiguity in Stokes’ theorem: concerning

the boundary line integral, which way are we supposed to go around (clockwise
or counterclockwise)? If we go the “wrong” way, we’ll pick up an overall sign
error. The answer is that it doesn’t matter which way you go as long as you are
consistent, for there is a compensating sign ambiguity in the surface integral:
Which way does da point? For a closed surface (as in the divergence theorem),
da points in the direction of the outward normal; but for an open surface, which
way is “out”? Consistency in Stokes’ theorem (as in all such matters) is given by
the right-hand rule: if your fingers point in the direction of the line integral, then
your thumb fixes the direction of da (Fig. 1.32).

Now, there are plenty of surfaces (infinitely many) that share any given bound-
ary line. Twist a paper clip into a loop, and dip it in soapy water. The soap film
constitutes a surface, with the wire loop as its boundary. If you blow on it, the soap
film will expand, making a larger surface, with the same boundary. Ordinarily, a
flux integral depends critically on what surface you integrate over, but evidently
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this is not the case with curls. For Stokes’ theorem says that
∫
(∇ × v) · da is equal

to the line integral of v around the boundary, and the latter makes no reference to
the specific surface you choose.

Corollary 1:
∫
(∇ × v) · da depends only on the boundary line, not

on the particular surface used.

Corollary 2:
∮
(∇ × v) · da = 0 for any closed surface, since the

boundary line, like the mouth of a balloon, shrinks
down to a point, and hence the right side of Eq. 1.57
vanishes.

These corollaries are analogous to those for the gradient theorem. We will develop
the parallel further in due course.

Example 1.11. Suppose v = (2xz + 3y2)ŷ + (4yz2)ẑ. Check Stokes’ theorem
for the square surface shown in Fig. 1.33.

Solution
Here

∇ × v = (4z2 − 2x) x̂ + 2z ẑ and da = dy dz x̂.

x
y

z

1

1

(iv) (ii)

(iii)

(i)

FIGURE 1.33

(In saying that da points in the x direction, we are committing ourselves to a
counterclockwise line integral. We could as well write da = −dy dz x̂, but then
we would be obliged to go clockwise.) Since x = 0 for this surface,

∫
(∇ × v) · da =

∫ 1

0

∫ 1

0
4z2 dy dz = 4

3
.
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Now, what about the line integral? We must break this up into four segments:

(i) x = 0, z = 0, v · dl = 3y2 dy,
∫

v · dl = ∫ 1
0 3y2 dy = 1,

(ii) x = 0, y = 1, v · dl = 4z2 dz,
∫

v · dl = ∫ 1
0 4z2 dz = 4

3
,

(iii) x = 0, z = 1, v · dl = 3y2 dy,
∫

v · dl = ∫ 0
1 3y2 dy = −1,

(iv) x = 0, y = 0, v · dl = 0,
∫

v · dl = ∫ 0
1 0 dz = 0.

So ∮
v · dl = 1 + 4

3
− 1 + 0 = 4

3
.

It checks.
A point of strategy: notice how I handled step (iii). There is a temptation to

write dl = −dy ŷ here, since the path goes to the left. You can get away with this,
if you absolutely insist, by running the integral from 0 → 1. But it is much safer
to say dl = dx x̂ + dy ŷ + dz ẑ always (never any minus signs) and let the limits
of the integral take care of the direction.

Problem 1.34 Test Stokes’ theorem for the function v = (xy) x̂ + (2yz) ŷ +
(3zx) ẑ, using the triangular shaded area of Fig. 1.34.

Problem 1.35 Check Corollary 1 by using the same function and boundary line as
in Ex. 1.11, but integrating over the five faces of the cube in Fig. 1.35. The back of
the cube is open.
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1.3.6 Integration by Parts

The technique known (awkwardly) as integration by parts exploits the product
rule for derivatives:

d

dx
( f g) = f

(
dg

dx

)
+ g

(
d f

dx

)
.


