To find the potential inside the sphere (r < R), we must break the integral into two pieces, using in each region the field that prevails there:

$$V(r) = \frac{-1}{4\pi\epsilon_0} \int_{\infty}^{R} \frac{q}{r'^2} dr' - \int_{R}^{r} (0) dr' = \frac{1}{4\pi\epsilon_0} \frac{q}{r'} \bigg|_{\infty}^{R} + 0 = \frac{1}{4\pi\epsilon_0} \frac{q}{R}.$$

Notice that the potential is *not* zero inside the shell, even though the field is. V is a *constant* in this region, to be sure, so that $\nabla V = \mathbf{0}$ —that's what matters. In problems of this type, you must always *work your way in from the reference point;* that's where the potential is "nailed down." It is tempting to suppose that you could figure out the potential inside the sphere on the basis of the field there alone, but this is false: The potential inside the sphere is sensitive to what's going on outside the sphere as well. If I placed a second uniformly charged shell out at radius R' > R, the potential inside R would change, even though the field would still be zero. Gauss's law guarantees that charge exterior to a given point (that is, at larger r) produces no net *field* at that point, provided it is spherically or cylindrically symmetric, but there is no such rule for *potential*, when infinity is used as the reference point.

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere whose radius is R and whose total charge is q. Use infinity as your reference point. Compute the gradient of V in each region, and check that it yields the correct field. Sketch V(r).

Problem 2.22 Find the potential a distance s from an infinitely long straight wire that carries a uniform line charge λ . Compute the gradient of your potential, and check that it yields the correct field.

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the center, using infinity as your reference point.

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference between a point on the axis and a point on the outer cylinder. Note that it is not necessary to commit yourself to a particular reference point, if you use Eq. 2.22.

2.3.3 ■ Poisson's Equation and Laplace's Equation

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a scalar potential.

$$\mathbf{E} = -\nabla V.$$

The question arises: What do the divergence and curl of E,

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$
 and $\nabla \times \mathbf{E} = \mathbf{0}$,

look like, in terms of V? Well, $\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla V) = -\nabla^2 V$, so, apart from that persistent minus sign, the divergence of \mathbf{E} is the Laplacian of V. Gauss's law, then, says

$$\nabla^2 V = -\frac{\rho}{\epsilon_0}.\tag{2.24}$$

This is known as **Poisson's equation**. In regions where there is no charge, so $\rho = 0$, Poisson's equation reduces to **Laplace's equation**,

$$\nabla^2 V = 0. \tag{2.25}$$

We'll explore this equation more fully in Chapter 3.

So much for Gauss's law. What about the curl law? This says that

$$\nabla \times \mathbf{E} = \nabla \times (-\nabla V) = \mathbf{0}.$$

But that's no condition on V—curl of gradient is *always* zero. Of course, we *used* the curl law to show that \mathbf{E} could be expressed as the gradient of a scalar, so it's not really surprising that this works out: $\nabla \times \mathbf{E} = \mathbf{0}$ permits $\mathbf{E} = -\nabla V$; in return, $\mathbf{E} = -\nabla V$ guarantees $\nabla \times \mathbf{E} = \mathbf{0}$. It takes only *one* differential equation (Poisson's) to determine V, because V is a scalar; for \mathbf{E} we needed two, the divergence and the curl.

2.3.4 ■ The Potential of a Localized Charge Distribution

I defined V in terms of \mathbf{E} (Eq. 2.21). Ordinarily, though, it's \mathbf{E} that we're looking for (if we already knew \mathbf{E} , there wouldn't be much point in calculating V). The idea is that it might be easier to get V first, and then calculate \mathbf{E} by taking the gradient. Typically, then, we know where the charge is (that is, we know ρ), and we want to find V. Now, Poisson's equation relates V and ρ , but unfortunately it's "the wrong way around": it would give us ρ , if we knew V, whereas we want V, knowing ρ . What we must do, then, is "invert" Poisson's equation. That's the program for this section, although I shall do it by roundabout means, beginning, as always, with a point charge at the origin.

The electric field is $\mathbf{E} = (1/4\pi\epsilon_0)(1/r^2)\,\hat{\mathbf{r}}$, and $d\mathbf{l} = dr\,\hat{\mathbf{r}} + r\,d\theta\,\hat{\boldsymbol{\theta}} + r\sin\theta\,d\phi\,\hat{\boldsymbol{\phi}}$ (Eq. 1.68), so

$$\mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} dr.$$

Setting the reference point at infinity, the potential of a point charge q at the origin is

$$V(r) = -\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l} = \frac{-1}{4\pi\epsilon_0} \int_{-\infty}^{r} \frac{q}{r'^2} dr' = \frac{1}{4\pi\epsilon_0} \frac{q}{r'} \Big|_{-\infty}^{r} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}.$$

(You see here the advantage of using infinity for the reference point: it kills the lower limit on the integral.) Notice the sign of V; presumably the conventional

3

Potentials

3.1 ■ LAPLACE'S EQUATION

3.1.1 ■ Introduction

The primary task of electrostatics is to find the electric field of a given stationary charge distribution. In principle, this purpose is accomplished by Coulomb's law, in the form of Eq. 2.8:

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\mathbf{z}}}{v^2} \rho(\mathbf{r}') d\tau'. \tag{3.1}$$

Unfortunately, integrals of this type can be difficult to calculate for any but the simplest charge configurations. Occasionally we can get around this by exploiting symmetry and using Gauss's law, but ordinarily the best strategy is first to calculate the *potential*, V, which is given by the somewhat more tractable Eq. 2.29:

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{1}{\imath} \rho(\mathbf{r}') d\tau'. \tag{3.2}$$

Still, even *this* integral is often too tough to handle analytically. Moreover, in problems involving conductors ρ itself may not be known in advance; since charge is free to move around, the only thing we control directly is the *total* charge (or perhaps the potential) of each conductor.

In such cases, it is fruitful to recast the problem in differential form, using Poisson's equation (2.24),

$$\nabla^2 V = -\frac{1}{\epsilon_0} \rho,\tag{3.3}$$

which, together with appropriate boundary conditions, is equivalent to Eq. 3.2. Very often, in fact, we are interested in finding the potential in a region where $\rho=0$. (If $\rho=0$ everywhere, of course, then V=0, and there is nothing further to say—that's not what I mean. There may be plenty of charge elsewhere, but we're confining our attention to places where there is no charge.) In this case, Poisson's equation reduces to Laplace's equation:

$$\nabla^2 V = 0, (3.4)$$

or, written out in Cartesian coordinates,

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0. \tag{3.5}$$

This formula is so fundamental to the subject that one might almost say electrostatics *is* the study of Laplace's equation. At the same time, it is a ubiquitous equation, appearing in such diverse branches of physics as gravitation and magnetism, the theory of heat, and the study of soap bubbles. In mathematics, it plays a major role in analytic function theory. To get a feel for Laplace's equation and its solutions (which are called **harmonic functions**), we shall begin with the one-and two-dimensional versions, which are easier to picture, and illustrate all the essential properties of the three-dimensional case.

3.1.2 ■ Laplace's Equation in One Dimension

Suppose V depends on only one variable, x. Then Laplace's equation becomes

$$\frac{d^2V}{dx^2} = 0.$$

The general solution is

$$V(x) = mx + b, (3.6)$$

the equation for a straight line. It contains two undetermined constants (m and b), as is appropriate for a second-order (ordinary) differential equation. They are fixed, in any particular case, by the boundary conditions of that problem. For instance, it might be specified that V=4 at x=1, and V=0 at x=5. In that case, m=-1 and b=5, so V=-x+5 (see Fig. 3.1).

I want to call your attention to two features of this result; they may seem silly and obvious in one dimension, where I can write down the general solution explicitly, but the analogs in two and three dimensions are powerful and by no means obvious:

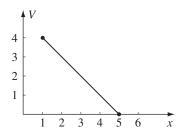


FIGURE 3.1

1. V(x) is the average of V(x + a) and V(x - a), for any a:

$$V(x) = \frac{1}{2}[V(x+a) + V(x-a)].$$

Laplace's equation is a kind of averaging instruction; it tells you to assign to the point x the average of the values to the left and to the right of x. Solutions to Laplace's equation are, in this sense, as boring as they could possibly be, and yet fit the end points properly.

2. Laplace's equation tolerates no local maxima or minima; extreme values of V must occur at the end points. Actually, this is a consequence of (1), for if there were a local maximum, V would be greater at that point than on either side, and therefore could not be the average. (Ordinarily, you expect the second derivative to be negative at a maximum and positive at a minimum. Since Laplace's equation requires, on the contrary, that the second derivative is zero, it seems reasonable that solutions should exhibit no extrema. However, this is not a proof, since there exist functions that have maxima and minima at points where the second derivative vanishes: x⁴, for example, has such a minimum at the point x = 0.)

3.1.3 ■ Laplace's Equation in Two Dimensions

If V depends on two variables, Laplace's equation becomes

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0.$$

This is no longer an *ordinary* differential equation (that is, one involving ordinary derivatives only); it is a *partial* differential equation. As a consequence, some of the simple rules you may be familiar with do not apply. For instance, the general solution to this equation doesn't contain just two arbitrary constants—or, for that matter, *any* finite number—despite the fact that it's a second-order equation. Indeed, one cannot write down a "general solution" (at least, not in a closed form like Eq. 3.6). Nevertheless, it is possible to deduce certain properties common to all solutions.

It may help to have a physical example in mind. Picture a thin rubber sheet (or a soap film) stretched over some support. For definiteness, suppose you take a cardboard box, cut a wavy line all the way around, and remove the top part (Fig. 3.2). Now glue a tightly stretched rubber membrane over the box, so that it fits like a drum head (it won't be a *flat* drumhead, of course, unless you chose to cut the edges off straight). Now, if you lay out coordinates (x, y) on the bottom of the box, the height V(x, y) of the sheet above the point (x, y) will satisfy Laplace's

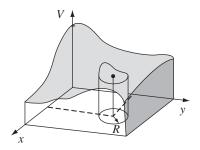


FIGURE 3.2

equation.¹ (The one-dimensional analog would be a rubber band stretched between two points. Of course, it would form a straight line.)

Harmonic functions in two dimensions have the same properties we noted in one dimension:

1. The value of V at a point (x, y) is the average of those *around* the point. More precisely, if you draw a circle of any radius R about the point (x, y), the average value of V on the circle is equal to the value at the center:

$$V(x, y) = \frac{1}{2\pi R} \oint_{\text{circle}} V \, dl.$$

(This, incidentally, suggests the **method of relaxation**, on which computer solutions to Laplace's equation are based: Starting with specified values for V at the boundary, and reasonable guesses for V on a grid of interior points, the first pass reassigns to each point the average of its nearest neighbors. The second pass repeats the process, using the corrected values, and so on. After a few iterations, the numbers begin to settle down, so that subsequent passes produce negligible changes, and a numerical solution to Laplace's equation, with the given boundary values, has been achieved.)²

2. V has no local maxima or minima; all extrema occur at the boundaries. (As before, this follows from (1).) Again, Laplace's equation picks the most featureless function possible, consistent with the boundary conditions: no hills, no valleys, just the smoothest conceivable surface. For instance, if you put a ping-pong ball on the stretched rubber sheet of Fig. 3.2, it will

$$\frac{\partial}{\partial x}\left(g\frac{\partial V}{\partial x}\right) + \frac{\partial}{\partial y}\left(g\frac{\partial V}{\partial y}\right) = 0, \quad \text{where } g = \left\lceil 1 + \left(\frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2\right\rceil^{-1/2};$$

it reduces (approximately) to Laplace's equation as long as the surface does not deviate too radically from a plane.

¹Actually, the equation satisfied by a rubber sheet is

²See, for example, E. M. Purcell, *Electricity and Magnetism*, 2nd ed. (New York: McGraw-Hill, 1985), problem 3.30.

roll over to one side and fall off—it will not find a "pocket" somewhere to settle into, for Laplace's equation allows no such dents in the surface. From a geometrical point of view, just as a straight line is the shortest distance between two points, so a harmonic function in two dimensions minimizes the surface area spanning the given boundary line.

3.1.4 ■ Laplace's Equation in Three Dimensions

In three dimensions I can neither provide you with an explicit solution (as in one dimension) nor offer a suggestive physical example to guide your intuition (as I did in two dimensions). Nevertheless, the same two properties remain true, and this time I will sketch a proof.³

1. The value of *V* at point **r** is the average value of *V* over a spherical surface of radius *R* centered at **r**:

$$V(\mathbf{r}) = \frac{1}{4\pi R^2} \oint_{\text{sphere}} V \, da.$$

2. As a consequence, V can have no local maxima or minima; the extreme values of V must occur at the boundaries. (For if V had a local maximum at **r**, then by the very nature of maximum I could draw a sphere around **r** over which all values of V—and a fortiori the average—would be less than at **r**.)

Proof. Let's begin by calculating the average potential over a spherical surface of radius R due to a *single* point charge q located outside the sphere. We may as well center the sphere at the origin and choose coordinates so that q lies on the z-axis (Fig. 3.3). The potential at a point on the surface is

 $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r},$

$$q$$
 q
 da
 y

FIGURE 3.3

³For a proof that does not rely on Coulomb's law (only on Laplace's equation), see Prob. 3.37.

where

$$r^2 = z^2 + R^2 - 2zR\cos\theta,$$

SO

$$\begin{split} V_{\text{ave}} &= \frac{1}{4\pi R^2} \frac{q}{4\pi \epsilon_0} \int [z^2 + R^2 - 2zR\cos\theta]^{-1/2} R^2 \sin\theta \, d\theta \, d\phi \\ &= \frac{q}{4\pi \epsilon_0} \frac{1}{2zR} \sqrt{z^2 + R^2 - 2zR\cos\theta} \, \bigg|_0^{\pi} \\ &= \frac{q}{4\pi \epsilon_0} \frac{1}{2zR} [(z+R) - (z-R)] = \frac{1}{4\pi \epsilon_0} \frac{q}{z}. \end{split}$$

But this is precisely the potential due to q at the *center* of the sphere! By the superposition principle, the same goes for any *collection* of charges outside the sphere: their average potential over the sphere is equal to the net potential they produce at the center.

Problem 3.1 Find the average potential over a spherical surface of radius R due to a point charge q located *inside* (same as above, in other words, only with z < R). (In this case, of course, Laplace's equation does not hold within the sphere.) Show that, in general,

$$V_{
m ave} = V_{
m center} + rac{Q_{
m enc}}{4\pi\,\epsilon_0 R},$$

where V_{center} is the potential at the center due to all the *external* charges, and Q_{enc} is the total enclosed charge.

Problem 3.2 In one sentence, justify **Earnshaw's Theorem:** A charged particle cannot be held in a stable equilibrium by electrostatic forces alone. As an example, consider the cubical arrangement of fixed charges in Fig. 3.4. It looks, off hand, as though a positive charge at the center would be suspended in midair, since it is repelled away from each corner. Where is the leak in this "electrostatic bottle"? [To harness nuclear fusion as a practical energy source it is necessary to heat a plasma (soup of charged particles) to fantastic temperatures—so hot that contact would vaporize any ordinary pot. Earnshaw's theorem says that electrostatic containment is also out of the question. Fortunately, it is possible to confine a hot plasma magnetically.]

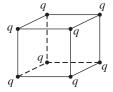


FIGURE 3.4

Problem 3.3 Find the general solution to Laplace's equation in spherical coordinates, for the case where V depends only on r. Do the same for cylindrical coordinates, assuming V depends only on s.

Problem 3.4

- (a) Show that the average electric *field* over a spherical surface, due to charges outside the sphere, is the same as the field at the center.
- (b) What is the average due to charges *inside* the sphere?

3.1.5 ■ Boundary Conditions and Uniqueness Theorems

Laplace's equation does not by itself determine V; in addition, suitable boundary conditions must be supplied. This raises a delicate question: What are appropriate boundary conditions, sufficient to determine the answer and yet not so strong as to generate inconsistencies? The one-dimensional case is easy, for here the general solution V = mx + b contains two arbitrary constants, and we therefore require two boundary conditions. We might, for instance, specify the value of the function at each end, or we might give the value of the function and its derivative at one end, or the value at one end and the derivative at the other, and so on. But we cannot get away with *just* the value or *just* the derivative at *one* end—this is insufficient information. Nor would it do to specify the derivatives at both ends—this would either be redundant (if the two are equal) or inconsistent (if they are not).

In two or three dimensions we are confronted by a *partial* differential equation, and it is not so obvious what would constitute acceptable boundary conditions. Is the shape of a taut rubber membrane, for instance, uniquely determined by the frame over which it is stretched, or, like a canning jar lid, can it snap from one stable configuration to another? The answer, as I think your intuition would suggest, is that *V* is uniquely determined by its value at the boundary (canning jars evidently do not obey Laplace's equation). However, other boundary conditions can also be used (see Prob. 3.5). The *proof* that a proposed set of boundary conditions will suffice is usually presented in the form of a **uniqueness theorem.** There are many such theorems for electrostatics, all sharing the same basic format—I'll show you the two most useful ones.⁴

First uniqueness theorem: The solution to Laplace's equation in some volume V is uniquely determined if V is specified on the boundary surface S.

Proof. In Fig. 3.5 I have drawn such a region and its boundary. (There could also be "islands" inside, so long as V is given on all their surfaces; also, the outer

⁴I do not intend to prove the *existence* of solutions here—that's a much more difficult job. In context, the existence is generally clear on physical grounds.

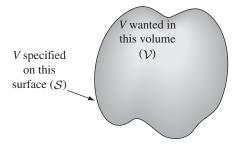


FIGURE 3.5

boundary could be at infinity, where V is ordinarily taken to be zero.) Suppose there were two solutions to Laplace's equation:

$$\nabla^2 V_1 = 0 \quad \text{and} \quad \nabla^2 V_2 = 0,$$

both of which assume the specified value on the surface. I want to prove that they must be equal. The trick is look at their *difference*:

$$V_3 \equiv V_1 - V_2$$
.

This obeys Laplace's equation,

$$\nabla^2 V_3 = \nabla^2 V_1 - \nabla^2 V_2 = 0,$$

and it takes the value *zero* on all boundaries (since V_1 and V_2 are equal there). But Laplace's equation allows no local maxima or minima—all extrema occur on the boundaries. So the maximum and minimum of V_3 are both zero. Therefore V_3 must be zero everywhere, and hence

$$V_1 = V_2$$
.

Example 3.1. Show that the potential is *constant* inside an enclosure completely surrounded by conducting material, provided there is no charge within the enclosure.

Solution

The potential on the cavity wall is some constant, V_0 (that's item (iv), in Sect. 2.5.1), so the potential inside is a function that satisfies Laplace's equation and has the constant value V_0 at the boundary. It doesn't take a genius to think of *one* solution to this problem: $V = V_0$ everywhere. The uniqueness theorem guarantees that this is the *only* solution. (It follows that the *field* inside an empty cavity is zero—the same result we found in Sect. 2.5.2 on rather different grounds.)

The uniqueness theorem is a license to your imagination. It doesn't matter *how* you come by your solution; if (a) it satisfies Laplace's equation and (b) it has

the correct value on the boundaries, then it's *right*. You'll see the power of this argument when we come to the method of images.

Incidentally, it is easy to improve on the first uniqueness theorem: I assumed there was no charge inside the region in question, so the potential obeyed Laplace's equation, but we may as well throw in some charge (in which case V obeys Poisson's equation). The argument is the same, only this time

$$\nabla^2 V_1 = -\frac{1}{\epsilon_0} \rho, \qquad \nabla^2 V_2 = -\frac{1}{\epsilon_0} \rho,$$

so

$$\nabla^2 V_3 = \nabla^2 V_1 - \nabla^2 V_2 = -\frac{1}{\epsilon_0} \rho + \frac{1}{\epsilon_0} \rho = 0.$$

Once again the difference $(V_3 \equiv V_1 - V_2)$ satisfies Laplace's equation and has the value zero on all boundaries, so $V_3 = 0$ and hence $V_1 = V_2$.

Corollary: The potential in a volume V is uniquely determined if (a) the charge density throughout the region, and (b) the value of V on all boundaries, are specified.

3.1.6 ■ Conductors and the Second Uniqueness Theorem

The *simplest* way to set the boundary conditions for an electrostatic problem is to specify the value of V on all surfaces surrounding the region of interest. And this situation often occurs in practice: In the laboratory, we have conductors connected to batteries, which maintain a given potential, or to **ground**, which is the experimentalist's word for V=0. However, there are other circumstances in which we do not know the *potential* at the boundary, but rather the *charges* on various conducting surfaces. Suppose I put charge Q_a on the first conductor, Q_b on the second, and so on—I'm not telling you how the charge distributes itself over each conducting surface, because as soon as I put it on, it moves around in a way I do not control. And for good measure, let's say there is some specified charge density ρ in the region between the conductors. Is the electric field now uniquely determined? Or are there perhaps a number of different ways the charges could arrange themselves on their respective conductors, each leading to a different field?

Second uniqueness theorem: In a volume \mathcal{V} surrounded by conductors and containing a specified charge density ρ , the electric field is uniquely determined if the *total charge* on each conductor is given (Fig. 3.6). (The region as a whole can be bounded by another conductor, or else unbounded.)

Proof. Suppose there are *two* fields satisfying the conditions of the problem. Both obey Gauss's law in differential form in the space between the conductors:

$$\nabla \cdot \mathbf{E}_1 = \frac{1}{\epsilon_0} \rho, \qquad \nabla \cdot \mathbf{E}_2 = \frac{1}{\epsilon_0} \rho.$$

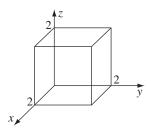


FIGURE 1.30

1.3.5 ■ The Fundamental Theorem for Curls

The fundamental theorem for curls, which goes by the special name of **Stokes' theorem**, states that

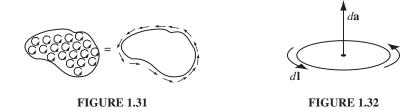
$$\int_{\mathcal{S}} (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \oint_{\mathcal{P}} \mathbf{v} \cdot d\mathbf{l}.$$
 (1.57)

As always, the *integral* of a *derivative* (here, the *curl*) over a *region* (here, a patch of *surface*, S) is equal to the value of the function at the *boundary* (here, the perimeter of the patch, P). As in the case of the divergence theorem, the boundary term is itself an integral—specifically, a closed line integral.

Geometrical Interpretation: Recall that the curl measures the "twist" of the vectors \mathbf{v} ; a region of high curl is a whirlpool—if you put a tiny paddle wheel there, it will rotate. Now, the integral of the curl over some surface (or, more precisely, the *flux* of the curl *through* that surface) represents the "total amount of swirl," and we can determine that just as well by going around the edge and finding how much the flow is following the boundary (Fig. 1.31). Indeed, $\oint \mathbf{v} \cdot d\mathbf{l}$ is sometimes called the **circulation** of \mathbf{v} .

You may have noticed an apparent ambiguity in Stokes' theorem: concerning the boundary line integral, which way are we supposed to go around (clockwise or counterclockwise)? If we go the "wrong" way, we'll pick up an overall sign error. The answer is that it doesn't matter which way you go as long as you are consistent, for there is a compensating sign ambiguity in the surface integral: Which way does da point? For a closed surface (as in the divergence theorem), da points in the direction of the outward normal; but for an open surface, which way is "out"? Consistency in Stokes' theorem (as in all such matters) is given by the right-hand rule: if your fingers point in the direction of the line integral, then your thumb fixes the direction of da (Fig. 1.32).

Now, there are plenty of surfaces (infinitely many) that share any given boundary line. Twist a paper clip into a loop, and dip it in soapy water. The soap film constitutes a surface, with the wire loop as its boundary. If you blow on it, the soap film will expand, making a larger surface, with the same boundary. Ordinarily, a flux integral depends critically on what surface you integrate over, but evidently



this is *not* the case with curls. For Stokes' theorem says that $\int (\nabla \times \mathbf{v}) \cdot d\mathbf{a}$ is equal to the line integral of \mathbf{v} around the boundary, and the latter makes no reference to the specific surface you choose.

Corollary 1: $\int (\nabla \times \mathbf{v}) \cdot d\mathbf{a}$ depends only on the boundary line, not on the particular surface used.

Corollary 2: $\oint (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = 0$ for any closed surface, since the boundary line, like the mouth of a balloon, shrinks down to a point, and hence the right side of Eq. 1.57 vanishes.

These corollaries are analogous to those for the gradient theorem. We will develop the parallel further in due course.

Example 1.11. Suppose $\mathbf{v} = (2xz + 3y^2)\mathbf{\hat{y}} + (4yz^2)\mathbf{\hat{z}}$. Check Stokes' theorem for the square surface shown in Fig. 1.33.

Solution

Here

$$\nabla \times \mathbf{v} = (4z^2 - 2x)\,\hat{\mathbf{x}} + 2z\,\hat{\mathbf{z}}$$
 and $d\mathbf{a} = dy\,dz\,\hat{\mathbf{x}}$.

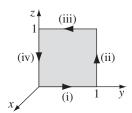


FIGURE 1.33

(In saying that $d\mathbf{a}$ points in the x direction, we are committing ourselves to a counterclockwise line integral. We could as well write $d\mathbf{a} = -dy \, dz \, \hat{\mathbf{x}}$, but then we would be obliged to go clockwise.) Since x = 0 for this surface,

$$\int (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \int_0^1 \int_0^1 4z^2 \, dy \, dz = \frac{4}{3}.$$

Now, what about the line integral? We must break this up into four segments:

(i)
$$x = 0$$
, $z = 0$, $\mathbf{v} \cdot d\mathbf{l} = 3y^2 dy$, $\int \mathbf{v} \cdot d\mathbf{l} = \int_0^1 3y^2 dy = 1$,

(ii)
$$x = 0$$
, $y = 1$, $\mathbf{v} \cdot d\mathbf{l} = 4z^2 dz$, $\int \mathbf{v} \cdot d\mathbf{l} = \int_0^1 4z^2 dz = \frac{4}{3}$,

(iii)
$$x = 0$$
, $z = 1$, $\mathbf{v} \cdot d\mathbf{l} = 3y^2 dy$, $\int \mathbf{v} \cdot d\mathbf{l} = \int_1^0 3y^2 dy = -1$,

(iv)
$$x = 0$$
, $y = 0$, $\mathbf{v} \cdot d\mathbf{l} = 0$, $\int \mathbf{v} \cdot d\mathbf{l} = \int_{1}^{0} 0 \, dz = 0$.

So

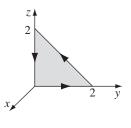
$$\oint \mathbf{v} \cdot d\mathbf{l} = 1 + \frac{4}{3} - 1 + 0 = \frac{4}{3}.$$

It checks.

A point of strategy: notice how I handled step (iii). There is a temptation to write $d\mathbf{l} = -dy\,\hat{\mathbf{y}}$ here, since the path goes to the left. You can get away with this, if you absolutely insist, by running the integral from $0 \to 1$. But it is much safer to say $d\mathbf{l} = dx\,\hat{\mathbf{x}} + dy\,\hat{\mathbf{y}} + dz\,\hat{\mathbf{z}}$ always (never any minus signs) and let the limits of the integral take care of the direction.

Problem 1.34 Test Stokes' theorem for the function $\mathbf{v} = (xy)\,\hat{\mathbf{x}} + (2yz)\,\hat{\mathbf{y}} + (3zx)\,\hat{\mathbf{z}}$, using the triangular shaded area of Fig. 1.34.

Problem 1.35 Check Corollary 1 by using the same function and boundary line as in Ex. 1.11, but integrating over the five faces of the cube in Fig. 1.35. The back of the cube is open.



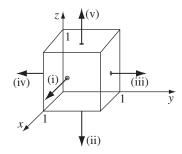


FIGURE 1.34

FIGURE 1.35

1.3.6 ■ Integration by Parts

The technique known (awkwardly) as **integration by parts** exploits the product rule for derivatives:

$$\frac{d}{dx}(fg) = f\left(\frac{dg}{dx}\right) + g\left(\frac{df}{dx}\right).$$